
J O U R N A L O F

C H E M I S T R Y

Materials
Structure of composites A1zx(A'xB12x)O3 related to the 2H

hexagonal perovskite: relation between composition and modulation

J. M. Perez-Mato,a M. Zakhour-Nakhl,b F. Weill*b and J. Darrietb

aDepartamento de FõÂsica de la Materia Condensada, Facultad de Ciencias, Universidad del
Pais Vasco, Apdo 644, 48080 Bilbao, Spain

bInstitut de Chimie de la MatieÁre CondenseÂe de Bordeaux (ICMCB), Avenue du Dr.
Schweitzer, 33608 Pessac Cedex, France

Received 10th May 1999, Accepted 8th September 1999

An idealized structural model is proposed for materials closely related to the 2H hexagonal perovskite and with

general formula A3nz3mA'nB3mznO9mz6n {or A1zx(A'xB12x)O3, x~[0, 1/2]}. The structures of all these

compounds, considered as commensurate or incommensurate modulated composites, can be described in a ®rst

approximation by a unique structure in the superspace formalism with occupational Crenel functions and

sawtooth displacive modulations along the trigonal axis. The structural modulation has only two variable

parameters: the modulation wave vector or mis®t parameter, which is ®xed by the compound composition, and

the height difference between the octahedra and triangular prisms of O6 present in the trigonal [A',B]O3

columns of the structure. Just by varying these parameters, the basic structural features of any compound with

arbitrary composition parameter x are reproduced, including the two limiting cases ABO3 (2H perovskite) and

A3A'BO6. For instance, the sequence of octahedra and prisms along the [A',B]O3 columns can be considered a

generalized Fibonacci chain and its dependence on composition follows a Farey tree rule which comes out

directly from the model. A comparison with available experimental data, and in particular with some fully

determined structures, demonstrates the soundness of the proposed scheme as a reference for such structures

and the best starting point for their re®nement. The model, although developed within the superspace

formalism, is closely related to the polytype layer picture in direct space. The present structural analysis

constitutes a new example of the ef®ciency of the 4-dimensional superspace formalism for describing in a

uni®ed form the structures of so-called `composition ¯exible' systems.

1 Introduction

It is well known that the structure of the hexagonal perovskite
ABO3 can be described by the stacking along the c-direction of
compact layers of composition [AO3]. This stacking creates
octahedral [O6] sites which share faces and are occupied by the
B cations. In recent work, Darriet and Subramanian1 have been
interested in related structures resulting from the stacking
along the c-direction of mixed layers [A3O9] and [A3A'O6]. The
latter derives from the [A3O9] layer by substituting one A' atom
for three oxygen atoms (Fig. 1). The stacking of these mixed
layers creates prismatic sites with triangular bases and leads to
a new family of phases with a general formula which can be
written as A3nz3mA'nB3mznO9mz6n where n/m is the ratio
between the number of layers of [A3A'O6] and [A3O9]. The
structures of all the phases belonging to this family are
characterised by a parameter a of around 10 AÊ aperovs
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and

a parameter c which depends on the integers n and m. The main
feature of all these structures is the presence of chains of
octahedra and trigonal prisms along the c-direction. The B
cations are located in the center of the octahedra while the A'
cations lie in the trigonal prisms. The lattice periodicity along z,
cs, depends on the particular stacking of layers realized in each
case and, in general, is much larger than the perovskite lattice
parameter cperovs. An approximate relation of this parameter cs

with the average thickness of a layer, e, can be deduced from
two rather general considerations: in order to obtain an
[A3A'O6] layer from an [A3O9] layer there are three different
possibilities of substitution. Hence there are three different
types of [A3A'O6] layers and as a consequence the total number
of [A3A'O6] layers in the unit cell must be a multiple of three.
As the stacking of the layers is of the hexagonal type, the total
number of layers in the unit cell must be even. Consequently
four cases can be distinguished:

Fig. 1 Schematic view of the [A3O9] and [A3A'O6] layers.
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1. When nzm is even and n is a multiple of 3, then
cs~(nzm)e.

2. When nzm is even and n is not a multiple of 3, then
cs~3(nzm)e.

3. When nzm is odd and n is a multiple of 3, then
cs~2(nzm)e.

4. When nzm is odd and n is not a multiple of 3, then
cs~6(nzm)e.

As members of the family, the following list of compounds
reported, to date in the literature, can be mentioned:

m~1 and n~0, A3B3O9. This is the trivial stoichiometry
ABO3, corresponding to the 2H polytype of the hexagonal
perovskites. Due to the absence of any [A3A'O6] layer the
chains are only made of octahedra sharing faces.

m~1 and n~1, A6A'B4O15. Members which have been
characterised are Ba6Ni5O15,2 Sr6Co5O15,3 Ba6CuIr4O15,4

Ba6ZnIr4O15,4 Sr6Rh5O15
5 and Ba6Mn4PdO15.6 The chains

along the c-direction are made of tetramers of face-sharing
octahedra isolated by a trigonal prism. These phases crystallise
in the R32 space group. Two different situations can be
distinguished: either A'~B (A'~Ni, Co, Rh) or A'|B. In the
former case the B cation formally presents two different
oxidation states and lies in both the prismatic and the
octahedral sites.

m~1 and n~2, A9A'2B5O21. The ®rst phase corresponding
to this case has been prepared.7 Originally the stoichiometry of
the compound was supposed to be Sr9Ni6.64O21, but recently
Evain et al.8 have shown this phase to be Sr9Ni7O21. The chains
are formed of dimers and trimers of octahedra isolated by
trigonal prisms.

m~1 and n~3, A4A'B2O9. The succession of one [A3O9]
layer and three [A3A'O6] layers leads to the formation of dimers
of octahedra separated by trigonal prisms. Many examples of
this member are already known: Sr4Ru2O9,9 in which the
prismatic site is empty (see Fig. 2), Sr4CuIr2O9,10 Sr4Ni3O9,11,12

the solid solution Ba12(BaxPt32x)Pt6O27
13 and the phase

Ba1.317(Cu,Pt)O3.14,15

m~0 and n~1, A3A'BO6. Numerous ternary or quaternary
oxides have this structure. The chains are now formed by a

sequence of one octahedron and one prism. Examples of such
structures include Sr4PtO6,16 Ca3LiRuO6,17 Sr3LiRuO6,17

Ba4PtO6,18 Sr3MgMO6 (M~Pt, Ir, Rh)19 and NaCa3MO6

(M~Ir, Ru).20

Some more complex cases with mw1 can also be cited:
Ba16Cu3Ir10O39 (n~9, m~7),21 Ba14Cu3Ir8O33 (n~9, m~5)21

and Ba5CuIr3O12 (n~3, m~2),21 Sr14Co11O33 (n ~ 9, m ~ 5)22

and Sr24Co19O57 (n~5, m~3)22 and Ba5Mn3PdO12 (n~3,
m~2)6 and Ba7Mn5PdO18 (n~3, m~4).6

The general formula of the whole family can be expressed in
an equivalent way as A1zx(A'xB12x)O3 with x~n/(3mz2n), so
that when compared with the reference 2H hexagonal
perovskite the substitution of B cations by A'zB pairs is
emphasized. In this formulation, the composition variable x
can be envisaged to be any number between 0 and 1/2.

According to the experimental studies published up to now,
some general structural features can be summarized:

(i) The compounds keep the main features of the hexagonal
2H perovskite with the [A',B]O3 groups forming a hexagonal
lattice of columns along the c-direction and the A cations
constitute chains between the [A',B]O3 columns.

(ii) In accordance with the layer model, instead of only
octahedra sharing faces, as in the 2H perovskite, the [A',B]O3

systems form columns with a certain sequence of octahedra and
trigonal prismatic units (see Fig. 2). As stressed above, the
tetravalent B atoms are located within the octahedral O6 units,
while the divalent A' cations are situated either within the
trigonal prisms or are split on their rectangular faces.11 Thus,
the ratio of prisms and octahedra in the chains, Nprisms/
Noctahedra, is determined by the ratio of A' atoms to B atoms in
the material, that is Nprisms/Noctahedra~x/(12x).

(iii) No general unique rule for the sequence of octahedra
and trigonal prisms within the columns has yet been
established, although in some cases the layer model favors
some particular sequences.21 Prisms are never consecutive
along z in a column and neighboring columns have the same
sequence but are shifted so that the distribution of prisms along
z on the three columns surrounding a set of interstitial A
cations is rather uniform.

(iv) The geometry of the octahedral and prismatic units
along the chains is rather rigid. The sizes of all octahedra
(prisms) are similar although this is not, in general, forced by
symmetry. The distortions correspond to small rotations of the
O3 triangles on the plane xy, while the heights along z of the
octahedra and prisms may ¯uctuate slightly from their average
values, Do and Dp, respectively. However, the average height
Dp of the prisms is signi®cantly smaller than the value 2Do

expected from the ideal layer model.
(v) For compounds with simple compositions, and hence

short periods, along z, the A atoms in the chains along z are
normally located either at the level of the center of a triangular
prism if it exists on any of the three neighboring [A',B]O3

columns, or at the level of the O3 triangles in neighboring
columns, as expected from the layer model.

When the general formula A1zx(A'xB12x)O3 is compared
with that written in terms of the numbers of layers n and m, it
can be seen that similar compositions (i.e. similar values of x)
correspond in general to quite different values of n/m and as a
consequence to very different cell sizes cs (and space group
symmetries) in the conventional crystallographic description.
However, the main features of the diffraction diagram are quite
similar for compounds with similar values of the composition
`mis®t' x (see Fig. 3), and in general the diffraction diagram can
be considered to vary continuously with this parameter. A
more unifying picture, consistent with these common features,
can be obtained if the compounds are described as modulated
composites, either commensurate or incommensurate.23±25 The
structure is then depicted as two mutually interacting
subsystems,8,14 modulated along z but periodic on the plane
xy. Subsystem 1 is formed by the [A',B]O3 columns and has an

Fig. 2 Average structure of Sr4%Ru2O9 (n~3, m~1, A'~%). The
sequence along the columns is 2 octahedra and 1 prism.
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average c-lattice parameter c1 close to cperovs/2, while the
average structure of subsystem 2, formed by the A cations, has
a c-lattice parameter c2~cperovs. Thus, the average unit cell of
the A subsystem contains twice as many `molecular' units as the
average cell of the [A',B]O3 substructure.8,14 Therefore, the
composition of a given compound can be directly related to the
ratio of the c-parameters of the two (average) substructures.
For instance a 1 : 1 composition ratio between the two
subsystems would require that (c2/2)/c1~1, while, in general,
the composition 1 : 1zx implies that (c2/2)/c1~1/(1zx).
Hence, a mere determination from the experimental diffraction
diagram of the ratio c~c2*/c1*~c1/c2 between the reciprocal
parameters c1* and c2* is suf®cient for deriving the compound
composition through the relation8 c~(1zx)/2. According to
the range of values of x, the parameter c in the diffraction
diagram can vary between 1/2 and 3/4.

As usual in composite systems, both substructures are
modulated along z with a modulation period given by the
average c-parameter of the other subsystem, i.e. the modula-
tion wave vector of subsystem 1 is c2*, and vice versa. For many
purposes, the two subsystems can be analysed separately in
direct space as two independent modulated structures. In
Fourier space, however, their diffraction diagrams superpose
coherently. An indexation with four indices is normally used
(see Fig. 3), so that each Bragg re¯ection H can be expressed as
H~ha*zkb*zlc1*zmc2*~(h, k, l, m) and in general both
subsystems contribute to each re¯ection. Only if the modula-
tions of both subsystems were neglected, the so called `main'
re¯ections (h, k, l, 0) with l|0 and (h, k, 0, m) with m|0 could
be interpreted as being Bragg re¯ections produced exclusively
by the subsystems 1 and 2, respectively, while the so called
`authentic satellite' re¯ections (h, k, l, m) with both l and m|0
would not exist. The modulations of both subsystems,
however, cause in general the presence of these latter satellites
plus non-negligible contributions of both subsystems in both
sets of main re¯ections.

According to the composite description, the structure of a
compound A1zx[A',B]O3 would be formally incommensurate
only if x has an irrational value (this would correspond to an
aperiodic sequence of layers). Indeed, a rational value of x is a
necessary and suf®cient condition for c being rational,
i.e. c~p/k, with p and k being integers, and in this case, the
composite is formally commensurate with a superstructure unit

cell parameter cs~c1k~c2p. Obviously any experimental value
of c can be identi®ed within experimental resolution with some
fraction p/k. In practice, however, an incommensurate
approximation can be valid for any fraction p/k with large
k.26 In any case, within the composite approach and its
description using the superspace formalism,24,25,27 the distinc-
tion of incommensurate cases with respect to commensurate
ones is not essential for a precise structural analysis. In this
formalism, the structure factor formula for the commensurate
case is always valid and can be used in any case. The
incommensurate version of the structure factor expression is a
simpli®cation of the general formula for irrational values of c,
which in broad terms is also approximately valid for fractions
with large denominators.26

The A1zx[A',B]O3 materials can be considered an example of
the type of structures pointed out by Withers et al. as
`composition ¯exible structures'.28 The use of a composite
description within the superspace formalism,24,25,27 relegates
the actual ratio c between the c-parameters of the two
substructures and therefore, the particular composition of
the system to a secondary role in the description of the
structure. Usually, as discussed in ref. 28 with several examples,
the symmetry properties (superspace group) and most of the
structural parameters in the superspace description of these
materials are essentially independent of the actual value of the
modulation wave vector or the mis®t between the two
substructures. This contrasts with the conventional super-
structure approach, where tiny changes of composition can
imply a change in the space group symmetry and uncontrolled
changes in the size of the superstructure unit cell, i.e. in the
number of structural parameters.

In other words, the structural differences in these composi-
tion ¯exible systems caused by a composition variation can be
quite drastic if described with conventional crystallography,
while in the superspace description they can be explained and
described by the change of the ratio c (the modulation wave
vector) keeping the rest of the structural model essentially
unchanged. Under this premise, it is to be expected that the
main structural features of all these A1zx[A',B]O3 materials
can be described with an idealized single structural model in the
superspace with the value of c as a free parameter depending on
the actual composition. The aim of the present paper is to
propose a model of such type. The value of c, and therefore the
value of x, will be taken as arbitrary and therefore
`incommensurate' in the practical sense stressed above. It will
be shown that the structural knowledge already available on
compounds of the family together with some simple assump-
tions based on the layer model lead to a unique structural
model in the superspace valid for any composition. The model
does not only include the general structural features listed
above, but has also additional predictive power. One can
derive, for instance, general rules with respect to the sequences
of octahedra and prisms in the columns (i.e. the stacking
sequences of layers [A3A'O6] and [A3O9]) as a function of the
composition. In particular, it will be shown that these
sequences are a generalization of that de®ned in the literature
as the Fibonacci chain.29

2 The superspace description

The superspace formalism was introduced in the 1980s for the
description of the so-called aperiodic crystals, i.e. incommen-
surate structures and quasicrystals,30,31 but the usefulness of
this approach for the description of normal structures as well,
in particular superstructures, has become steadily clearer
through multiple independent works.26±28,32 In this section,
we brie¯y summarize under this viewpoint the main concepts of
this formalism. For simplicity and accuracy, we restrict the

Fig. 3 Schematic diffraction pattern of the composite crystal
A1zx(A'xB12x)O3 on the xz plane, showing the two different reciprocal
lattice periodicities along the z-axis and the four integer indexation of
the Bragg peaks.
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discussion to modulated systems with a single modulation wave
vector.

In general we can consider a structure as modulated along z
according to a modulation wave vector q~cc* if it can be
described as a set of average atomic positions (x0

m, y0
m, z0

m)
(m~1,..,s) repeated periodically according to a Bravais lattice
given by a unit cell with basis vectors a, b, c, plus a set of
periodic atomic modulation functions (AMF) ux

m(x4), uy
m(x4),

uz
m(x4), pm(x4), of period 1, so that the fractional coordinates

[xm(m), ym(m), zm(m)] and occupation pm(m) of an atom m in a
cell m~m1azm2bzm3c (where mi is an integer), are cell
dependent and given by:

xm�m�~x0
mzux

m�c�m3zz0
m�zW� �1�

ym�m�~y0
mzuy

m�c�m3zz0
m�zW� �2�

zm�m�~z0
mzuz

m�c�m3zz0
m�zW� �3�

pm�m�~pm�c�m3zz0
m�zW� �4�

where W is a particular initial value of the x4 variable. The so-
called four dimensional `superspace' is then the result of
`adding' the fourth coordinate x4 associated with the AMFs to
the real space. In the superspace, under certain restrictions the
expressions (1)±(4) can be given a geometrical meaning which is
schematized using some examples in Fig. 4 and 5. The ®gures
depict a projection on the plane (z, x4) of a modulated structure
with two atoms per average unit cell and average coordinates
z~0 and z~1/2. The ®rst atom with average position at z~0
has a displacive modulation, while the second at z~1/2 has

only an occupational modulation described by a step function
with full occupation limited to the interval indicated by a
thicker line and vacant sites by crosses (Fig. 4 and 5).

The continuous variable x4 runs downwards along the
vertical axis, while the horizontal one represents a projection of
the real space along the z-direction. Similar schemes could be
depicted for the equations corresponding to the coordinates x
and y. Under this superspace construction, the real space
structure can be interpreted as a section of a 4-dimensional
periodic structure where the AMFs are represented along the
4th dimension. The value of the initial `phase' W de®nes the
section chosen. The superspace formalism recovers in this way
the crystallographic concepts associated with periodic struc-
tures at the cost of having to work in a higher dimensional
space. Fig. 4 depicts a hypothetical modulated con®guration
with wave vector exactly (2/3)c* and W~0. Fig. 5 shows a
structure with the same AMFs but with c~4/7. In the ®rst case,
only three particular values within a period of each AMF are
relevant as they are the only ones that appear periodically in the
`real' section z, producing a superstructure with cs~3c. The
actual value of W is especially relevant to de®ne the three values
of the AMFs which are realized in the real space structure. In
Fig. 5, the period of the superstructure becomes 7c, and
consequently seven different values of each AMF (including
vacancies from the step-like occupation AMF) are realized on
the real structure. The initial phase W still plays a role here,
de®ning the actual `real space' points in the AMFs, but it is
clear that as the supercell period becomes larger, the number of
points in the functions which are physically realized increases
correspondingly, and the W becomes less signi®cant. In the
mathematical limit of an in®nite superstructure period
(incommensurate q-vector) every point within a period of
each AMF crosses once (and only once) the real section and the
phase W becomes equivalent to an arbitrary choice of cell
`zero'. Hence, in general, the AMFs in the superspace
description can be viewed as some kind of algebraic ®le of
all the atomic positions (and occupations) in the crystal. In a
commensurate superstructure this number is ®nite and W is a
relevant parameter to de®ne the corresponding points in the
AMFs, while in the incommensurate case it is in®nite and W is
arbitrary. However, in both cases, the AMFs can be de®ned
with a ®nite number of parameters, and the formal difference
between both cases becomes irrelevant as the number of these
parameters becomes signi®cantly smaller than the number of
atomic positions being described. For instance, if in Fig. 4 the
value of c were 2/3zd with d close to zero, independently of the
particular value of d, rational or not, the whole AMF, instead
of only three points, would become in practice relevant in the
real structure. Notice that in this case the size of the interval

Fig. 4 Projection on the z/x4 plane of the superspace description of a
hypothetical modulated structure with two atoms per average unit cell
and modulation wave vector q~2/3c* and initial phase W~0. The
points of the displacive modulation functions that are relevant on the
three consecutive cells of the threefold superstructure are highlighted
with ®lled dots numbered according to their order in consecutive
average cells.

Fig. 5 The same superspace structure as in Fig. 4, but with modulation
wave vector q~4/7c*.
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with non-zero occupation probability of the second atom is
directly related to the composition of the material.

An important feature of the superspace description is that
the set of all different chemical coordinations (up to any
arbitrary distance) of a given atom species are also `stored'
along the fourth coordinate and easily retrieved by looking at
different horizontal sections of the superspace construction.
For instance, in Fig. 6, the different z-distances which happen
between atoms in contiguous average cells for the case of Fig. 5
are indicated. Again an incommensurate q-value would imply,
instead of a discrete ®nite set of distances, that the whole
continuous set of atomic distances given by the horizontal
distance between the two AMFs for any value of x4 are realized
somewhere in the real structure.

The superspace description somehow separates the effect on
the structure of the particular value of the modulation wave
vector from the remaining structural parameters, in particular
the parameters describing the AMFs. The AMFs are rather
smooth functions or at least can be described with a small
number of parameters. It can be seen with the example of Fig. 5
and 6 that a small change of the modulation wave vector while
keeping the AMFs unchanged, can produce a drastic change of
the supercell size but will scarcely vary the most immediate
local environment of each atom. Only higher order coordina-
tion shells will suffer signi®cant changes.

In general, the AMFs of a modulated structure with a single
modulation wave vector satisfy symmetry properties described
by a 4-dimensional superspace group.30,33 In general, the
existence of a symmetry operation (R,e |t,t) in the superspace
symmetry group, implies:

(i) The operation (R|t) belongs to the (conventional) space
group of the average structure given by the lattice vectors m
and average fractional positions (x0

m, y0
m, z0

m).
(ii) The point group operation, described by the 363 matrix

R, must keep the direction of the modulation wave vector
invariant, so that Rq~¡q (here we are assuming the
modulation wave vector has not got an additional commensu-
rate component along any direction).

(iii) If two atoms m, n are related by the operation (R|t) in the
average structure so that atom m is transformed into atom n by
the action of the operation (R|t), their corresponding AMFs are
related according to the following relations:

un�x4�~Rum�e�x4{t�� �5�
pn�x4�~pm�e�x4{t�� �6�

where un(x4)~[ux
n(x4), uy

n(x4), uz
n(x4)] and e~z1 or 21

depending on Rq~zq or 2q. Eqns. (5) and (6) should be also
satis®ed if atoms n and m coincide, i.e. (R|t) keeps invariant
atom m in the average position. In this particular case eqns. (5)
and (6) with n~m become a symmetry constraint on the form of
the AMFs of atom m.

In a commensurate case, the symmetry of the resulting
superstructure can also be described by a normal space group
which depends in general on the value of the initial phase W and
can be derived from the superspace group.26

Let us consider now the example of a composite X1zxY
formed by two subsystems: one of Y atoms with a monoatomic
average structure with cell c1 along z, and the other formed by
X atoms with average cell c2 along z and two atoms per unit cell
at average coordinates z~1/4 and 3/4. A possible embedding in
the superspace (projection on the z, x4 plane) of the structure of
such a composite is shown in Fig. 7(a) for x~0.2. Again, the
real structure (its projection along z) is given by the horizontal
section. The geometrical construction ensures that the average
positions of X(1) and X(2) atoms are repeated along z with
periodicity c2, while Y atoms have an average period c1. The
subsystem of Y atoms is depicted as a modulated structure with
modulation wave vector [(1zx)/2]c1* with the same embedding
rules as in Fig. 4 and 5, while the modulated structure
corresponding to the X atoms is shown in a distorted form.
As in the single modulated structures depicted in Fig. 4 and 5,
the AMFs of the X(1), X(2) and Y atoms can be considered a
`®le' of all atomic positions realized in the modulated structure.
Also all interatomic distances are stored along the coordinate
x4. The difference now is that the mis®t between the two
subsystems results in the distances between atoms belonging to
different subsystem not being upper bounded, and the
interatomic distances along z have also no lower boundary.
If the system is incommensurate (x is irrational or, in practice,
long period commensurate), the two subsystems can in
principle `slide' with respect to each other with negligible
energy cost. This is the so-called phason degree of freedom and
corresponds in the superspace scheme Fig. 7(a) to a change of
the origin along x4 and the corresponding change of the
horizontal section that represents the structure in real space.

To use one or the other subsystem in a composite as a
privileged reference, and hence described as a conventional
modulated structure, is an arbitrary choice. For instance, an
equivalent superspace embedding can be done, as shown in
Fig. 7(b), with the subsystem X being the one depicted as a

Fig. 6 The same zx4 projection as in Fig. 5, showing how the different
interatomic z-distances between atoms in contiguous cells can be
retrieved from the relative positions of the modulations along x4.

Fig. 7 (a) Projection on the zx4 plane of the superspace description of a
hypothetical composite X1zxY modulated along the z-axis with x~0.2
and subsystem Y as reference. (b) The same structure as in (a), but with
subsystem X as reference.
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conventional modulated structure. The modulation wave
vector is identi®ed in this case with c1*, so that q~c1*~
[2/(1zx)]c2*, and the metrics of the superspace unit cell is quite
different from that in Fig. 7(a). However, the atomic positions
along the section corresponding to the real z-axis of both
®gures coincide and, therefore, both representations are fully
equivalent. One should stress that different choices of the
superspace embedding imply in general a different de®nition
for the fourth coordinate x4, and consequently, also change the
description of the superspace group, analogous to the changes
of setting in normal space groups. In fact, in a composite the
structural parameters of each subsystem are usually given using
the superspace embedding where this particular subsystem is
taken as reference, and therefore, in general, a different setting
of the common superspace group is used for each subsystem.27

3 The subsystem [A',B]O3

Evain et al.8 have recently analyzed the structure of
Sr1.2872NiO3 as an incommensurate composite, and proposed
as the symmetry of the compound the superspace group
R�3m�00c�0s with subsystem NiO3 as reference (see Table 1).
We will start by assuming this superspace symmetry to be valid
for the whole family of compounds, independent of the
composition and actual atoms A, A' and B involved in the
compound. The assumption of a superspace group common to
the whole family of materials directly introduces a restriction
on the possible space group symmetries of the materials when
described in conventional crystallography as `superstructures'.
As stressed above, the possible space groups of the resulting
superstructures can be derived from the superspace group of
the generic structure and depend in general on the value of the
initial `phase' W. For the superspace group R�3m�00c�0s, this
derivation has been carried out.8 The results are reproduced in
Table 2, with a slight correction concerning the possible special
initial phases, and in a different form which emphasizes the
equivalence of W values corresponding to different equivalent
domains. According to Table 2, depending on the value of x (or
c) and the initial phase W, the symmetry can vary within a
limited set of nine possible space groups. Typically, for a ®xed
composition, the space groups can be one of two or three
depending on the value of W. This is a strong prediction coming
from the model, and is in principle at variance with some of the
symmetries proposed in the literature for some of the
compounds.21

With R�3m�00c�0s as the superspace group of the subsystem
[A',B]O3, the space group of its average structure must be R�3m.
Also following the features of the above mentioned structure of
Sr1.2872NiO3,8 we take Z~3 in the average unit cell with the
[A',B] atom located at the origin, while the three oxygens are
distributed on six half-occupied positions on the plane z~1/2
forming a hexagon which is symmetry-generated from a single
independent position, for instance O(1) at (x, x, 1/2). These six
average oxygen positions can be separated into two types,
oxygens Oa and Ob, forming two equilateral triangles, which
correspond to the two possible orientations of the triangular O3

faces on the [A',B]O3 columns (Fig. 8). The R-centering
translations of the space group produce the two additional
molecules in the average unit cell. The description of the actual

modulated structure is completed with the AMFs, both
occupational and displacive, of the atoms in the asymmetric
unit of the average structure, namely [A',B] and O(1).

3.1 Occupation modulation functions

We will now show that the simplest choice of occupational
AMFs for the single independent oxygen, compatible with the
proposed superspace symmetry, leads directly to a simple x-
dependent rule for the sequence of octahedra and prisms along
the columns [A',B]O3 which is in agreement with the available
observations.

The average oxygen at (x, x, 1/2) (type Oa) is invariant for the
operation (2xy|000), and therefore its AMFs should be
invariant for the superspace group operation �2xy; �1j000 1

2
�

[see Table 1 and eqns. (5) and (6)] :

pOa

�
{x4z

1

2

�
~pOa�x4� �7�

i.e. the function should be symmetric with respect to x4 ~1/4
and 3/4. From eqns. (5) and (6) it is also easy to see that the
occupational AMFs of the other two Oa atoms are identical
and those of the Ob atoms are translated by 1/2 along x4:

pOb�x4�~pOa

�
x4{

1

2

�
�8�

According to the structural features mentioned in the
introduction, one can presume that the occupation of sites
Oa and Ob is mutually exclusive, the sites being either fully
occupied or empty. Under this assumption it is then easy to
imagine the simplest AMF pOa(x4) compatible with the
symmetry condition (7) and with the condition that on average
vpOaw~1/2, that is the function:

Table 1 Symmetry operations of the R�3m�00c�0s superspace group

�E;1jn1n2n3n4� �i;�1j0000�
�3z

z ; 1j0000� ��3z
z ;

�1j0000�
�3{

z ; 1j0000� ��3{
z ;

�1j0000�
�mx; 1j000 1

2
� �2x; �1j000 1

2
�

�my; 1j000 1
2
� �2y; �1j000 1

2
�

�mxy; 1j000 1
2� �2xy; �1j000 1

2�
z�E;1j 1

3
2
3

2
3

0� z�E;1j 2
3

1
3

1
3

0�

Table 2 Possible space groups for commensurate structures with
q~cc1* and superspace group R�3m�00c�0s. For each, the necessary
initial phase of the modulation W (see text) is indicated in sets of values
corresponding to equivalent domains

c~p/k

p~3n W~0 (mod. 1/k) W~1/2k (mod. 1/k) W~arbitrary
k~even R�3c R�3c R3c
p~3n W~0 (mod. 1/2k) W~1/4 (mod. 1/2k) W~arbitrary
k~odd R�3 R32 R3
p|3n W~0 (mod. 1/3k) W~1/6k (mod. 1/3k) W~arbitrary
k~even P�3c P�3c P3c
p|3n W~0 (mod. 1/6k) W~1/4 (mod. 1/6k) W~arbitrary
k~odd P�3 P32 P3

Fig. 8 Scheme of the average atomic positions of the oxygen atoms on
the plane z~1/2 and centered around the origin. All positions are half
occupied and the two distinct sets of atoms denoted Oa and Ob are
indicated.
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pOa�x4�~1 0 < x4 < 1=2 �9�
pOa�x4�~0 1=2 < x4 < 1 �10�

Indeed, this is the occupational modulation of oxygen (a Crenel
function) which has been proposed8 for the compound
Sr1.2872NiO3. Here we only want to stress that this form can
be considered the simplest one compatible with the superspace
symmetry and the empirical fact of the existence of triangular
sets of atoms Oa and Ob separately along the columns. In
Fig. 9, a scheme of these occupational AMFs in the superspace
is shown. The ®gure has been constructed for a composition
around x~0.2 (c~0.6). One can easily see how the oxygens Oa

and Ob are distributed along z forming a unique fully de®ned
sequence with either consecutive triangles Oa±Ob or Ob±Oa

(octahedra with the two distinct orientations), or consecutive
Oa±Oa or Ob±Ob triangles (trigonal prisms with the two distinct
orientations). If we assume now that all octahedra have B
atoms inside and all prisms have A' atoms inside, the form of
the occupational AMFs for the `average' atom [A',B] is
unequivocally determined and is also shown in Fig. 9. Let us
note that the symmetry conditions (5) and (6) for this latter
function (it should have periodicity 1/2 and be symmetric with
respect to x4~0 and 1/2) are satis®ed automatically. Looking
along the internal superspace coordinate x4, the proportion of
each polyhedron type on each column for an incommensurate
case can now be seen. Consistent with the composition, we have
a fraction (12x)/2 of B atoms inside the Oa±Ob octahedra, and
an equal fraction inside the Ob±Oa octahedra, while the A'
atoms can be within Oa±Oa and Ob±Ob prisms, a fraction x/2 in
each situation. The distribution along x4 of the different types
of coordination follows the scheme in Fig. 10. For commensu-
rate cases with c~p/k, where k is odd, the equality of the
number of prisms/octahedra with the two distinct orientations
disappears, while it is maintained when k is even.

3.2 The sequence of octahedra and prisms on the columns

Let us consider, for instance, the commensurate case x~1/5
(c~3/5). According to eqns. (1)±(4), the values of the AMFs
for the [A',B] atom realized in the structure are consecutively
those at x4~(3/5)nzW with n~0, 1,..., 4. Hence, from the set
of Crenel functions depicted in Fig. 9 and the scheme in Fig. 10,
it is easy to derive that the sequence along the column is going
to be 4 octahedra±1 prism. Depending on the initial phase this
sequence is either (Octa±b±Octb±a±Octa±b±Octb±a±Pra±a) or
(Octb±a±Octa±b±Octb±a±Octa±b±Prb±b). These two sequences
are equivalent and could correspond to a twinning of the
samples. If x is not exactly 1/5 but very close to it, it is
straightforward to see from the superspace construction that
the sequence along the column is going to be very similar. The
periods of (4 Oct±1 Pr) will only suffer some `fault' every few
periods, the density of these faults being smaller the closer the
value of x is to 1/5. Similarly, for x~1/4 (c~5/8) it is
straightforward to retrieve from the occupational AMF in the
superspace that the sequence on the columns is (3 Oct±1 Pr ),
the period being 2 sequential units of the type (Octa±b±Octb±a±
Octa±b±Prb±b)±(Octb±a±Octa±b±Octb±a±Pra±a). The need for a
second sequential unit in order to obtain a full period is
obvious when seeing the sequence in terms of Oa and Ob layers,
and results also from the denominator in c that forces the
relation cs~8c1. For all c values with an even denominator the
period will contain two equivalent sequential units, while for c
values with an odd denominator the period coincides with a
single sequential unit and, as there are two equivalent
con®gurations with distinct orientations, twinning with respect
to these is then possible. It is worth mentioning that this is an
additional twinning possibility which may occur whatever the
tridimensional symmetry (P or R).

If one now considers the case x~2/9 (c~11/18), and the
resulting physical successive points (11/18)nzW0 (n~0, 1,...,
17) on the scheme in Fig. 10, it is straightforward to see that the
sequence is (4 Oct±1 Pr±3 Oct±1 Pr), the period containing two
sequential units. Hence the sequence is just the juxtaposition of
the sequential units corresponding to x~1/5 and x~1/4. In
general, from the general form of the occupational AMFs for
the oxygens a general rule can be established which can be
stated quite simply if the so-called Farey tree34 is used (Fig. 11).
Namely, if the value of x is n/m (where n and m are integers)

Fig. 9 Projection on the zx4 plane (c~0.6) of the occupational
modulation functions of the subsystem [A',B]O3, according to the
model proposed. A unit cell is emphasized by thicker lines.

Fig. 10 Scheme of the O6 con®gurations along the internal coordinate
x4 for a column of [A',B]O3 resulting from the model in Fig. 9 for
x~1/5, 1/4 and 2/9. The numbered discrete points correspond to
the x4 values (cnzW) associated with consecutive average cells along z.
The resulting sequence of octahedra and prisms can be immediately
derived and is indicated in each case.
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and in the Farey tree this fraction has as preceding `generators'
the fractions n1/m1 and n2/m2, so that n/m~(n1zn2)/(m1zm2),
the sequence of octahedra and prisms on the columns will be
just the juxtaposition of the sequences corresponding to the x-
values n1/m1 and n2/m2. If this rule is followed systematically
starting with the simplest fractions x~0/1 (1 Oct) and x~1/2
(1 Oct±1 Pr), the sequence for any arbitrary composition can be
derived. For irrational values of x, the corresponding aperiodic
sequence can be approximated through successive fractions
approaching the actual value of x up to any desired accuracy.

Therefore, according to the above general model, for a given
composition x there is only one possible sequence. This result
can be compared with the sequences predicted21 with plausible
layer arrangements. In all cases a unique sequence is proposed
which coincides with that obtained from the general rule stated
above. For complex cases, such as x~2/5, 2/7 or 5/13, for
which these authors consider two sequences as plausible only
one of them corresponds to that deducible from the Farey tree
rule. To the best of our knowledge, all sequences observed
experimentally are also consistent with this rule, and therefore
with the general model we are proposing.

These sequences of octahedra and prisms along the columns
can be compared with the so-called Fibonacci chain introduced
in the analysis of quasicrystals as one of the simplest models of
quasiperiodicity.29 The Fibonacci chain is a mathematical
sequence of two different segments S and L (short and long,
respectively) along a single direction with a relative ratio
between the number of intervals S and L equal to the golden
mean t~

���
5
p

{1
ÿ �

=2~0:618034, so that the `composition' of
the chain can be expressed with the formula SxL12x with x~t/
(1zt)~12t~0.381966. The aperiodic Fibonacci sequence can
be constructed making use of the Farey tree and the same rule
explained above particularized for successive fractions
approaching the irrational value x~12t up to any desired
accuracy. If we identify the segments S and L with the prisms
and octahedra, respectively, their sequences in the columns of
(A'xB12x)O3 can be then considered a generalization of the
Fibonacci sequence for an arbitrary relative composition of the
two segments. Hence, A1zx(A'xB12x)O3 compounds may

produce a physical realization of the Fibonacci chain if their
composition is `tuned' to the necessary value x~12t. This
property may be of particular importance considering that the
physical properties of the Fibonacci chain, as a prototype of
one-dimensional quasiperiodic systems, have been extensively
studied from a theoretical viewpoint. Materials of a family with
the appropriate composition could then be used as an
experimental benchmark for such studies, for instance with
respect to electronic and magnetic properties. Let us note that
the octahedra are in general shorter along z than the prisms;
this means that when compared with the usual representation
of a Fibonacci chain, we are reversing the length of the L and S
units, so that L is the shortest. This change is irrelevant from a
physical viewpoint. A second more important difference is the
fact that two types of prisms and octahedra exist on the
columns (prisms Pra±a and Prb±b, octahedra Octa±b and Octb±a)
depending on the oxygen triangles involved. If these differences
are taken into account, some additional complexity with
respect to the theoretical Fibonacci chain is present in the
columns and causes the modulation wave vector to be (1zx)/2
instead of x/2. Thus, for a composition x~12t~0.381966
which yields (approximately) the Fibonacci sequence of prisms
and octahedra along the column, the modulation wave vector is
not t but (22t)/2~0.690983.

Fig. 9 permits us not only to distinguish clearly the sequence
of octahedra and prisms along the columns but also, for a ®xed
value of x4 which particularizes a certain octahedron or prism
in the column, one can observe by just looking at its
neighborhood along z the existing neighbors above and
below along the column. Thus, one can easily deduce for
instance that all prisms are isolated, i.e. bordered by an
octahedron above and below (along z). Also, one sees that a
fraction x/(12x) of all the octahedra have neighboring prisms
above and an equal fraction have a neighboring prism below.
Octahedra limited by prisms both above and below will occur if
xw1/3, and the fraction of octahedra in this situation will be
(3x21)/(12x). At the limit x~1/2, all octahedra are limited by
prisms on both sides.

Up to now we have only analyzed the distribution of prisms

Fig. 11 Scheme of the Farey tree within the interval [0, 1/2].
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and octahedra along the column centered at the origin of the
plane xy, however, there are two other columns to be
considered in the average unit cell, which are derived from
the ®rst through the action of the R-centering superspace
translations (1/3, 2/3, 2/3) and (2/3, 1/3, 1/3). The three columns
are centered at the points (0,0), (1/3, 2/3) and (2/3, 1/3) on the
plane xy, so that they can be viewed as occupying the vertices of
an equilateral triangle, the A(1) cations being located at their
interstice. In Fig. 12, the projection on the plane zx4 of the
occupational AMFs of the oxygens of the three columns is
shown. Taking the viewpoint of the A cations located between
the three columns, it is interesting to see that the shift of the
common sequence of octahedra and prisms from one column to
another causes the trigonal prisms along z in the three columns
around to be distributed as uniformly as possible.

3.3 Displacive z-component modulation functions

The oxygen positions are not only modulated with respect to
their occupation, but also must have some x4-dependent
displacement that will distinguish the prismatic and octahedral
sites. The approximate form of the AMFs along z can be easily
imagined. Again, the simplest situation compatible with the
superspace symmetry and the geometric requirements is quite
obvious. If we make the approximation that all prisms and
octahedra are geometrically equivalent so that they all have the
same length along z, Dp and Do respectively, it implies that all
distances along z between consecutive triangles Oa±Oa, Ob±Ob

in the trigonal regions should be equal to Dp, while the
common value for any z-distance between pairs of triangles

Oa±Ob and Ob±Oa should be Do. This can only be achieved with
a sawtooth modulation for the oxygens as depicted in Fig. 13.
The function is antisymmetric with respect to the points
x4~0.25 and 0.75, as required by the superspace operation
�2xy; �1j000 1

2
�. As expected from the analogy above, the scheme

of the oxygen modulation is quite similar to the superspace
(modulated) representation of a Fibonacci chain to be found in
the literature.35 In contrast, with it, the existence of two
different oxygen types introduces an additional doubling of the
period along the internal space, while the oblique angle in the
superspace unit cell that de®nes the modulation wave vector is
composition dependent and not restricted to any particular
value.

If the atoms B and A' are always imagined to be located at
the centers of the octahedra and prisms, respectively, they also
must have a sawtooth modulation along z, as shown in Fig. 13.
If this sawtooth modulation of the cations B and A' did not
exist, it would imply in fact that the position of these cations
would be modulated when seen relative to their surrounding
oxygens. The sawtooth functions related to the cations B and
A' are respectively de®ned by dB~(12x)dO and dA'~xdO. It is
important to point out that the set of AMFs proposed in
Fig. 13 for describing the columns (A'xB12x)O3 only includes a
single free parameter, namely the semi-difference between the
z-lengths of the prisms and octahedra, (Dp2Do)/2, henceforth
denoted dO.

If dO is assumed to be composition independent, a linear
relation between the average cell parameter c1 and x can be
easily derived from the geometric construction of Fig. 13:
c1~Doz2dOx which is merely equivalent to the simple and

Fig. 12 Projection on the zx4 plane of the existence lines (average
position) of three neighboring [A',B]O3 columns related by the R-
centering translations. The regions along x4 with prismatic coordina-
tion are emphasized. The existence lines of the A(1) and A(2) atoms are
also depicted.

Fig. 13 Projection on the zx4 plane (c~0.6) of the displacive
modulation functions of the subsystem [A',B]O3 according to the
model proposed. A unit cell is emphasized by thicker lines. The
sawtooth structure of all the functions is described by the single
parameter dO.
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quite logical statement that c1 should be the average of the
distances Dp and Do according to their relative frequency along
the column, i.e. c1~(12x)DozxDp. This relation can be
con®rmed in the series of compounds Ba1zx[Cu,Ir]O3 which
have recently been characterized.4,21 Fig. 14 shows the clear
linear correlation of c1 and x for the ®ve reported compounds,
all with x within the interval [0.2, 0.3]. The linear ®t gives the
values 2.57 and 0.56 AÊ for Do and 2dO, respectively. These
values compare fairly well with the average metal±metal
distance within contiguous octahedra of 2.56 AÊ derived for
the structure of Ba6CuIr4O15 (x~0.2)4 and in contiguous
octahedra and prisms (2.91 AÊ ) for the same structure, which
would correspond to a 2dO value of 0.68 AÊ .

The modulation model of Fig. 13 can be compared with the
structure of Sr1.2872NiO3.8 The z-component AMFs for the
atoms in a single column of this structure are reproduced in
Fig. 15. The oxygens follow the scheme of sawtooth functions.
This feature is more remarkable if we take into account the fact
that the functions were parameterized using a Fourier-type
basis of functions whose amplitudes were the parameters
adjusted in the re®nement.8 From the ®gures one can estimate
dO~0.35 AÊ ; from this value and with x~0.287 and
c1~2.574 AÊ for this compound the values of Do and Dp can
then be easily derived as 2.37 and 3.07, respectively. To
compare the modulation of the Ni cations it is important to
take into account that, according to the structural model of ref.
8 the Ni sites at the prisms are split in the average unit cell and
populate some split positions around the center of the prisms,
both on the column axis and also at the centers of the
rectangular prism faces. In the prismatic regions, Fig. 15 only
depicts the modulation of the partially occupied Ni site located
at the center of the prism faces, which is the only prismatic Ni
site which is modulated in the model. It can be clearly seen that
the determined modulations comply approximately with the
model in Fig. 13. They are also sawtooth modulated, as
expected, so that the Ni is always equidistant from the two
contiguous triangular oxygen layers. In the case of the Ni
atoms with octahedral coordination, a clear deviation from this
scheme can be observed. This feature is quite signi®cant as is
also observed in the commensurate model which was obtained
independently in a conventional superstructure approximation,
when described in the superspace (see Fig. 15). The sawtooth
function ¯attens as it approaches its boundaries indicating that
the Ni becomes acentric at the corresponding octahedra. If we
consider the scheme in Fig. 9, and taking into account that for
this compound x/2~0.15, one sees that most of the octahedral
Ni cations have a contiguous prism, either above or below, so
that their oxygen coordination is acentric with respect to
second neighbors along the chain. This contrasts with the Ni
atoms at the prism faces which have neighboring octahedra on
both sides along z, and thus have a rather symmetric
coordination up to second neighbors. This may be the

explanation for the ¯attening of the modulation of octahedral
Ni: the cation somehow gets closer to the oxygens of the
contiguous prism. Only about 20% of the octahedral Ni atoms,
those close to the points x4~0 and 1/5, also have contiguous
octahedra both above and below, and it is just at this point that
the AMF approaches ideal sawtooth behaviour. Hence, we can
speculate that in general the AMFs along z of the octahedral B
cations will become closer to the sawtooth model the smaller
the value of x.

Obviously, any accurate experimental determination of the
structure of a single compound will deviate somehow from it.
However, it is the natural reference for the description of any
structure within the family and for its comparison with the
structures of other compounds. It is also, in principle, the best
starting point for a re®nement process of experimental
diffraction data. For instance, in the structural model discussed
above,8 the split Ni positions at the prism centers were left
unmodulated, presumably to keep the number of adjustable
parameters in the re®nement under reasonable limits. But from
the discussion above it is clear that keeping these Ni positions
unmodulated paradoxically introduces an unwanted modula-
tion of their positions relative to neighboring oxygens along z,
which, in general, can be considered an artifact. A Ni position
at the centers of the prisms in the starting model requires, in
general, the presence of a sawtooth modulation fully correlated
with that of the oxygen, as shown in Fig. 13.

3.4 Displacive xy modulation functions

According to eqns. (5) and (6), the superspace symmetry
forbids the modulation on the xy plane of the atoms A' and B,
as their average position is at the origin. On the other hand, the
superspace symmetry restrictions for the xy modulations of the
oxygens [eqn. (5) and (6)] imply that the trigonal symmetry of
the O3 triangles forming the bases of both prisms and
octahedra is always kept, while they can rotate and `breathe'
along x4 (and therefore along z). This modulation should
follow a helicoidal pattern. It is interesting that the invariance
of the representative oxygen with respect to the symmetry
operation �2xy; �1j000 1

2
� forces this pattern to have a symmetry

line along the direction (1, 1) on the plane xy at the points
x4~1/4 and 3/4, where the modulation cannot have a rotation
component and should be limited to an eventual breathing.
These points correspond to the centers of the octahedral
regions of the modulation of [A',B] along x4. Except for these

Fig. 14 Experimental parameter c1 as a function of the composition x
of different compounds4,21 of the type Ba1zx[Cu,Ir]O3 and the linear ®t
corresponding to the law c1~DOz2dOx.

Fig. 15 Graphical representation of z/c1 versus x4 of the structure of
the subsystem NiO3 in the compound Sr1.2872NiO3.8 Modulations are
viewed along the shifted internal coordinate t~x4zqrav, which is
coincident with the x4 coordinate for the Ni atoms. The discrete points
indicate the set of atomic positions corresponding to the alternative
commensurate structural model proposed.8
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symmetry-forced features, we have no steric or plausibility
argument for postulating a particular form for these functions.
In general, one can expect they will be quite small compared
with the modulations along z, and they can be neglected in the
idealized model we are discussing.

4 The subsystem A

The average unit cell of the second subsystem is not R-centered
as with the [A',B]O3 subsystem, but primitive. The reason is
that the R-centering superspace operations �1; 1j 1

3
2
3

2
3

0�,
�1; 1j 2

3
1
3

1
3

0� in the setting of the [A',B]O3 subsystem, become
�1; 1j 1

3
2
3

0 2
3
� and �1; 1j 2

3
1
3

0 1
3
�, respectively, in the setting with

subsystem A privileged, where the role of components z and x4

must be interchanged. This means that the average structure of
this second subsystem formed by the cations A has additional
lattice translations, �1

3
2
3

0� and �2
3

1
3

0�, on the xy plane, and a
primitive average unit cell can be chosen with �1

3
2
3

0� and �1
3

�1
3

0�
as unit cell vectors on the xy plane. This primitive average unit
cell contains two cations A(1) and A(2) at �1=3; 0; 1=4� and
�2=3; 0; 3=4�, respectively (only one symmetry-independent).
Therefore, in the setting with subsystem [A',B]O3 as reference,
which we have used up to now, the superspace lines describing
the average position of atoms A neglecting modulations (i.e.
the `existence' lines of these atoms) follow the scheme in
Fig. 7(a). Note that the average c-unit cell parameter to which
the z-coordinates of the A cations refer is now c2 instead of c1.
The mis®t between the c-parameters of the two subsystems
makes possible that A cations are found along z at any height
with respect to the [A',B] atoms on the columns. Fig. 12 shows
the beautiful correlation of the modulation on the [A',B]O3

columns (i.e. the presence of trigonal prisms and A' instead of B
atoms) with the relative positions of the A cations of the second
subsystem. The existence lines of the A cations cross the
existence lines of the [A',B] atoms of the three surrounding
columns just at the centers of the `prismatic regions'. This
means in real space that prisms and A' cations are located along
the columns at the points where a neighboring A cation has its
z-level considerably shifted with respect to the oxygen layers of
any of the surrounding columns and approaches the height
corresponding to the midpoint between two oxygen triangles
along the column. In other words, in contrast with other types
of modulated composites, the two subsystems are strongly
correlated and the occupational modulation of the [A',B]
cations is an ef®cient way for getting the A' atoms and the
excess A cations close together over the whole structure.

Incidentally, in the case of an incommensurate (or long
period) composite, the strong modulation of the [A',B]O3

subsystem producing the O6 prisms along the columns and its
coupling with the subsystem of A atoms is bound to freeze the
phason-like sliding of the two subsystems, usually present in
incommensurate composites. A dynamic phason in these
compounds would necessarily produce the interchange of B
and A' atoms, as the prisms should follow the z-sliding of the
neighboring A cation. The obvious energetic barriers for such
discrete structural changes makes certain the non-existence in
these systems of a conventional phason branch. Only in the
cases where A' and B atoms coincide, the difference presumably
being their oxidation state, phason-like relaxational dynamics
can be envisaged which, similarly as occurs in quasicrystals,36

could involve discrete ¯ips of oxygen triangles from con®g-
uration Oa into Ob, and vice versa. However, a rather peculiar
additional feature of the eventual phason ¯ips in these
materials would be the correlated presumed valence `switch'
of the B cations in order to transform from octahedral
tetravalent cations into divalent prismatic ones.

A more complete perspective of the correlation between the
subsystem of the A atoms and columns is obtained if we also
take into account the relative position of the z-component

AMFs of the oxygens in the three columns surrounding a set of
A atoms, as depicted in Fig. 16 for x~0.25. We have chosen in
this graphical example a case with x|0.20 to avoid the
peculiarity of this particular value with respect to the functions
of the A cations (see below) and to show the general validity of
the argument. The lines of existence of the A cations not only
cross the centers of the three prismatic regions for the existence
lines of the [A',B] atoms in the three columns, but also the
centers of the oxygen sawtooth functions in the octahedral
regions. Thus, the shift along z of the three columns produced
by the R-centering is such that the z-level of the oxygens in the
three columns is regularly shifted from one column to another,
so that the A cation is rather close to the oxygen triangle in one
of the surrounding columns. Then, two types of situations can
be distinguished for the z-level of the average position of atom
A: (i) it is close to the center of a prism in one of the
surrounding columns and (ii) it is closer to the z-level of a
triangle of oxygens in one of the surrounding columns. These
regions alternate up to three times along the existence line of
the A cation, corresponding to the three neighboring columns.

Fig. 16 Projection on the zx4 plane of the displacive z-component
sawtooth functions (full lines) corresponding to the oxygens of three
neighboring columns [A',B]O3 related by the R-centering translations
according to the model proposed for x~0.25. Only the functions
relevant to describe the environment of the A(1) and A(2) cations are
indicated. The regions with prismatic coordination for each column
along x4 are also emphasized. The dotted lines correspond to the
average positions (existence lines) of these atoms.
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Up to now we have only discussed the average positions of
the A atoms repeated with periodicity c2 along z and their
relative z-position with respect to the atoms in the subsystem of
[A',B]O3 columns, since this is, in fact, what the so-called
existence line of the A atoms in Fig. 16 depicts. But A atoms
should also be modulated as a result of their coupling with the
columns. The layer model1 mentioned in the introduction helps
us to guess a ®rst approximation of the corresponding z-
component AMFs. According to the layer model (see Fig. 1),
the A atoms are located at the level of the centers of the prisms,
if present, and at the level of the oxygen triangles in the other
columns. In a real compound, these two properties cannot in
general be achieved simultaneously because the z-length of the
prisms is not double that of the octahedra, as assumed by the
model. We can however relax the restriction and presume that
A atoms will tend to ful®ll either one of the two conditions, as
seen in short period compounds of the family, or satisfy some
compromise between them. Indeed, we have already seen that
the structure, and in particular its symmetry (the R-centering),
seem to have the speci®c aim of situating the average positions
of A atoms as close as possible to either one or the other
condition. We can therefore imagine an A z-modulation which
tries to complete the process, i.e. the modulation will deviate
the z-coordinate of the A atom from its average position (the
`existence' line) so that it acquires the same height as either the
center of the neighboring prism, if existing, or if not, the
neighboring oxygen triangle. The hypothetical modulation is
depicted in Fig. 17(a) for x~0.2 in the setting of the ®rst
subsystem. A clearer picture of the situation can be obtained if
the subsystem of A atoms is regarded in the second setting with
subsystem A as the reference modulated structure, as in
Fig. 7(b). Fig. 17(b) depicts the modulation along the new
internal coordinate, x'4, running along the horizontal axis,
which corresponds to the oblique direction of the existence line
of A(1) in Fig. 17(a). One can see that the function is again a
sawtooth function with two distinct intervals corresponding to
the subsequent prismatic and octahedral x'4 regions. The
period 1/3 of the function and its antisymmetry with respect to
0, 1/6, 2/6..., 5/6 is forced by the superspace symmetry
operations �2x

�1j00 1
2

0�, �3z
z ;

�1j 1
3

2
3

0 2
3
� and �3z

z ;
�1j 2

3
1
3

0 1
3
�

[eqns. (5) and (6)] which keep the average position of A(1)
invariant [eqns. (5) and (6)]. These symmetry features are fully
consistent with the sawtooth function proposed. The prismatic
and octahedral intervals are x/(1zx) and (1/3)2[x/(1zx)],
respectively, so that the two intervals always sum a period 1/3
of the function, and at the limit x~1/2, the octahedral intervals
(z-levels with no prism on any of the three surrounding

columns) disappear. Both sawtooth functions always have the
same slope, which can be easily derived from the geometrical
construction; its value is [Do22do] (~[2Do2Dp]), so that the
values dA

p and dA
o, de®ning the sawtooth amplitudes in each

interval, satisfy the relation dA
pzdA

o~[Do22dO]/2 with
dA

p/dA
o~3x/(122x), so that dA

p~[x/2(1zx)][Do22dO].
Notice that for x~0.2 both octahedral and prismatic intervals
have equal widths and the maximal displacement of the two
sawtooth functions with respect to the average position of A(1)
is minimized for this composition.

The modulation functions of A(1) cations proposed in the
scheme in Fig. 17(b) are much more speculative that those of
the ®rst subsystem, since in this case no stereochemical
argument somehow forcing the form of the function exists.
The proposed sawtooth functions are only the result of
assuming, following the layer model, that the A cations
should be located either at the level of the prism centers or at
the level of the oxygen faces of the octahedra. The actual
modulation in real systems may be a much smoother function
with some kind of compromise between both roles. In any case,
the function in Fig. 17(b) can be interpreted as a scheme of the
z-distances, with respect to the average position of cation A(1),
of the neighboring prism centers and the closest octahedral O3

triangles. Under this viewpoint, the composition x~0.2 seems
to have special signi®cance. For this composition these z-
distances in both prismatic and octahedral intervals are
minimized and this would also be approximately true for any
composition around this value, so one may speculate that
incommensurate compositions around x~ 0.2 may be easier to
synthesize than those approaching the two extreme limits x~0
and 1/2.

A comparison of the function in Fig. 17(b) with the
modulation in a real system would clearly indicate the degree
of correlation between the z-coordinate of the A cations and
the local structure of the three neighboring [A',B]O3 columns.
This can again be done with the structural models (both
commensurate and incommensurate) proposed for
Sr1.2872NiO3

8 which are shown in Fig. 18 superposed with
the theoretical sawtooth model. The correlation is quite
striking for the sinusoidal modulation of the incommensurate
model. The ®tted value of the single Fourier amplitude used in
the parameterization of the re®ned function seems to be
optimal to mimic the suggested sawtooth behavior. One can see
from this result that a sawtooth starting model can be much
better adapted for an optimal re®nement of the structure. The
discrete points in the ®gure correspond to the alternative
commensurate model (x~2/7), also re®ned in ref. 8. Unfortu-
nately, in contrast with the case of the ®rst subsystem, here the
commensurate discrete positions clearly deviate from those
suggested by the incommensurate model when particularized
for x~2/7. The difference is rather signi®cant; 0.1 AÊ displace-
ments compared with 0.02 AÊ in the commensurate model. The
reason for this inconsistency between the two models is unclear,
but the coincidence of the discrete positions suggested by the
incommensurate model with the z-level of the prism centers, as
represented by the sawtooth function, suggests that the latter
may be closer to reality.

5 The layer model

The structural model worked out above can be considered a 4D
superspace derivation of the layer model1 if relaxed from the
condition Dp~2Do that is forced if layers are considered
strictly rigid. The deviation of the structure above from this
rigid layer picture can be clearly seen in Fig. 16, where the
intersections of the three oxygen sawtooth functions with the z-
real axis at x4~0 indicate the different z-levels of the oxygens in
the three neighboring columns, which a rigid layer model will
situate on the same z-level. Indeed, it is enough to add to the

Fig. 17 (a) Hypothetical ideal displacive z-modulation (c~5/8) of the
A(1) cations (z~1/4) seen in the setting with subsystem [A',B]O3

privileged. (b) The same modulation along the internal coordinate in
the setting with subsystem A privileged.
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above 4D composite structural model the additional layer
condition Dp~2Do for the slope of the three sawtooth
functions. This particular value makes the three functions
superpose so that the oxygens on the three columns are at the
same z-level forming a layer. Thus, the z-mis®ts of oxygens in
different columns are a natural consequence of the deviations
of the O6 prisms from their `layer' size, and should be taken
into account in any realistic model. The merging into the rigid
layer model when Dp~2Do can also be seen on the general
modulation for cation A(1) suggested in Fig. 17. The slope
[2Do2Dp] of the sawtooth functions becomes zero, meaning
that the A cations require no modulation for being at the same
level of the oxygens and prism centers. In fact, the existence
lines of these cations which describe their average position
superpose, in this case, with the sawtooth functions describing
the modulation of oxygens and prism centers.

It is also interesting to compare the expressions for the
superstructure cell parameter cs as a function of the average
thickness of the layers, e, and the integers m and n in the
formula A3nz3mA'nB3mznO9mz6n, which were derived in the
introduction under the layer model, with the exact ones coming
from the value of c. For c~p/k, where p and k are integers, we
have cS~kc1~pc2. The value of c expressed as a function of n
and m is [3(nzm)]/[2(2nz3m)]. Considering that n and m are
mutually prime, it is then easy to arrive rigorously at the same
expressions for cs as in the introduction if we identify the
`average' layer thickness e with c2/2. It may seem paradoxical
that c1 cannot be identi®ed with the average layer thickness
when interpreting the system as a layer model. The reason
becomes clear when the expressions of c1 and c2 as a function of
Do, Dp and x are particularized for Dp~2Do. Under this
condition c1~Do(1zx), while c2~2Do. Thus, within the rigid
layer model, e~Do, and c2 is x-independent, the x-dependent
mis®t between the two subsystems forming the composite being
carried out by the x-dependence of c1. Therefore, the x-
dependence of c2 usually observed in these systems can already
be considered a deviation from the layer model, but many other
features of this model are maintained and c2/2 can still be
identi®ed with the average thickness of the layers.

6 Concluding remarks

The composite modulated model proposed above applies
trivially to the commensurate structures at the two limits of the
x-range. The case of A3A'BO6 is depicted in Fig. 19. As c~3/4,
its space group R�3c is in accord with the general results of
Table 2. It can be seen in the ®gure that nearly all atomic
positions along the z-axis can be identi®ed trivially with special
positions within our general model. Note, for instance, that the
positions for the A cations along z correspond to three
symmetry-forced zeros of its modulation function. The only
free z-component associated with an oxygen is given by the
amplitude of the corresponding sawtooth function. One can
also see in Fig. 19 that the four possible values (0, 1/4, 1/2 and
3/4) for the initial phase W of the modulations (see Table 2)
correspond to the four possible different equivalent choices for
the initial cell in the sequence of four c1 unit cells present within
the superstructure unit cell. They represent four possible anti-
phase domains. A second set of special values for the initial
phase (1/8, 3/8, 5/8, 7/8) would describe a different non-
equivalent structure, but with the same space group R�3c, as
indicated in Table 2.

For the case of the 2H perovskite ABO3 (x~0), reducing the
c value to 1/2 is not enough. The 2H perovskite has higher
symmetry than that expected from Table 2. The reason is that
the symmetries of this table are calculated for general
modulations ful®lling the superspace symmetry. The necessary
additional symmetry of the 2H perovskite is obtained by
considering the special layer case of Dp~2Do in the oxygen
sawtooth functions. This eliminates the z-shift between
neighboring columns and is consistent with the fact that
hexagonal ABO3 is a perfect layer structure. As no prism exists

Fig. 18 Graphical representation of the displacive z-component
modulation of the Sr cations in the compound Sr1.2872NiO3.8 The
discrete points indicate the set of atomic positions corresponding to the
alternative commensurate structural model.8 For comparison the
model sawtooth modulation [see Fig. 17(b)] resulting from the
empirical values of Do and dO (see Fig. 15) for this compound is also
shown.

Fig. 19 Graphical superspace representation (projection zx4) of
compounds of the type A3A'BO6 within the general model of Fig. 13
and 17(a). The discrete points within the modulation functions
corresponding to the atomic positions realized in the real space
structure are indicated with symbols: red points (A atoms), blue crosses
(A', B atoms) and black triangles (O atoms).
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in this structure, Dp becomes unde®ned except for the
condition that it should be adequate to equalize the z-level
of oxygens in neighboring columns. Thus, the case x~0,
although within the general framework, is somehow an isolated
case, as for any other composition x|0, no matter how close to
zero, the existence of a certain number of O6 prisms along the
columns forces us to consider a value for Dp in general quite far
from the ideal layer value of 2Do.

Summarizing, a general modulated composite model has
been proposed as a natural reference for the description of the
structures of the compounds A3nz3mA'nB3mznO9mz6n. A single
parameter, besides the composition, de®nes the modulation
functions for all the atoms. These functions are in general of the
sawtooth type, similar to those present in one dimensional
models of quasicrystals. The proposed structural model
generalizes the layer picture and includes local ¯uctuations of
the layer plane due to the mismatch between the sizes of the
octahedral and prismatic oxygen polyhedra formed in the
structures. The model not only agrees with the main features
observed in these structures, but also predicts the sequence of
octahedra and prisms along the trigonal [A',B]O3 columns for
any composition. These sequences are a generalization of the
sequence known as the Fibonacci chain and this is realized for a
speci®c composition. The interaction between the two sub-
systems of the composite is very strong, with the modulation of
the A cations strongly correlated with the modulations of the
[A',B]O3 columns that cause the presence of the O6 prisms. In
the cases where the B cations in the compound can have two
and four valence states, the phason-type excitations of these
systems should have very peculiar features as they would
involve atomic ¯ips similar to those observed in quasicrystals
correlated with valence switches of some B cations.
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